噬菌体在食品保护中的应用和挑战
尽管现代食品安全控制和食品加工技术已经得到了相当大的改进,但食品污染和食源性疾病在发达国家和发展中国家仍然普遍存在。在食品工业中,物理方法(蒸汽、干热和辐照)、化学方法(抗菌剂和防腐剂)和生物防治手段(抗生素)通常用于控制食源性致病细菌。然而,前两者处理过的食品感官质量会受到影响,达不到消费者的接受程度,后者的滥用也会导致耐药菌株的出现。而噬菌体具有高效、特异性强、对食品风味影响小等优势,在食品工业中具有广阔的应用前景。本文重点描述了噬菌体在肉类、水果、蔬菜和即食食品中的应用,还讨论了噬菌体生物防控面临的挑战及解决或避免这些问题的措施。
1.食品级噬菌体的开发
生物控制是利用裂解性噬菌体针对食品中的特定食源性细菌,同时不会对其正常且通常有益的微生物群产生有害影响。这项技术不仅能有效抑制病原菌并延长食品保质期,还具有高特异性和无有害残留物的优点(Moye等,2018)。因此,噬菌体产品已在许多国家得到应用。
2006年,美国食品药品监督管理局(FDA)批准了用于即食食品(RTE)和禽类产品的单核细胞增生李斯特菌噬菌体产品Listex™ P100(EBI Food Safety)。该产品能有效消除肉类和奶酪产品中的单核细胞增生李斯特菌污染,且对人体无害(Figueiredo和Almeida,2017;Guenther等,2009)。这是世界上首个在食品工业中使用的FDA批准产品,表明FDA认为噬菌体是公认安全的(GRAS)。随后,该产品还获得了欧洲、澳大利亚和新西兰的批准(Figueiredo和Almeida,2017)。自那以后,许多用于食品的噬菌体制剂获得了批准,例如EBI Food Safety开发的针对单核细胞增生李斯特菌的PhageGuard Listex™,以及针对沙门氏菌的PhageGuard S™,后者可用于熟肉、禽类、鱼类和各种乳制品(Kahn等,2019;Moye等,2018)。此外,PhageGuard系列产品已被批准作为即时食品加工助剂使用,无需特殊标签说明。2011年,针对大肠杆菌O157:H7的噬菌体制剂Ecoshield™被批准用于碎红肉,其有效率超过95%(Moye等,2018)。2013年,针对沙门氏菌的噬菌体制剂SalmoFresh™被批准用于禽肉产品和其他食品(Kahn等,2019)。表1列出了FDA部分批准的产品信息。
2.噬菌体防控常见的食源性致病菌
除了已获批的噬菌体产品外,还有许多噬菌体已在实验室环境中应用于常见食源性致病菌的预防和控制(表2)。
3.噬菌体应用面临的挑战以及如何避免和解决这些应用缺陷
如前文所述,越来越多的文献证明噬菌体可以减少或根除食品中的目标病原体。然而,在噬菌体生物防治得到更广泛接受之前,还应解决与噬菌体应用相关的问题。例如,细菌能够产生对噬菌体的抗性,噬菌体的灭菌效率低于传统灭菌技术,噬菌体在实际应用环境中的滴度降低,完整的噬菌体可能在体内产生免疫反应,噬菌体污染在发酵工业中是一个严重的问题,而消费者可能无法接受食品中存在病毒(噬菌体)(Krylov等人,2015年;Malik等人,2017年;Nilsson,2014年;Reina和Reina,2018年;Rose等人,2014年)。
3.1抑菌效果的异质性
在实际应用中,噬菌体可能无法完全杀死或抑制病原体,而细菌可能会自发地产生噬菌体抗性菌株(Guenther等人,2012年)。面对这一问题,多种噬菌体的组合或与其他传统杀菌方法的结合可能更有效地抑制病原体,从而确保食品的安全性和稳定性(Bourkal'tseva等人,2011年;Phothaworn等人,2020年)。噬菌体混合物往往具有更广泛的宿主范围,并且对抗噬菌体细菌更有效(图1)(Fernandes,2006年)。例如,Tomat等人(2018年)使用六种噬菌体的混合物研究其在牛肉中的抑菌效果,发现这些噬菌体在4 ℃下储存6天后比单独使用一种噬菌体表现出更强的抗菌效果。
噬菌体易于获取和使用,因此许多研究人员将噬菌体与传统的灭菌方法相结合,以探索其组合在防控方面的效果(图2)。Chibeu等人(2013年)将乳酸钾和乙酸二钠与噬菌体制剂结合使用,可以确保在整个储存期间(在4 ℃下储存的牛肉和鸡肉中),单核细胞增生李斯特菌的数量不超过2 log CFU/cm²。Yang等人(2017b)将ListShield™与月桂酸精氨酸结合使用,发现单核细胞增生李斯特菌的数量减少了2 log CFU/g。且对肉色、pH值、脂肪氧化或感官评价没有任何影响。Leverentz等人(2003年)比较了噬菌体鸡尾酒(LM-103和LMP-102)与抗菌剂乳酸链球菌素(Nisin)在控制新鲜切割的甜瓜和苹果片中的单核细胞增生李斯特菌方面的协同作用,发现噬菌体鸡尾酒与Nisin的组合比单独使用更能有效地减少水果表面的单核细胞增生李斯特菌。
因此,噬菌体不仅可以在鸡尾酒中用于抑制病原菌,而且与其他食品级抗菌剂的联合应用可能表现出更加显著的抗菌潜力。
3.2应用稳定性
多数噬菌体相关研究都是在实验室中进行的。然而,在实际应用中,噬菌体制剂的稳定性可能会显著减弱。因此,人们尝试开发基于噬菌体的特异性抗菌活性包装材料,这些材料不仅提高了噬菌体的稳定性,还通过减少与非目标微生物的相互作用来增强抗菌靶向性(图3)。例如,Vonasek等人(2014年)将T4噬菌体包裹在乳清分离蛋白(WPI)蛋白膜中。荧光标记的噬菌体在WPI膜基质中均匀分布,且WPI膜能够在光照下22°C或避光下4°C下稳定贮藏1个月。此外,WPI膜能在水环境和叶片表面孵育3 h内释放大量噬菌体。Tomat等人(2019年)将含有六种噬菌体的混合制剂添加到基于浓缩乳清分离蛋白的可食用薄膜中,形成了一种具有抗菌特性的活性包装材料,能够完全灭活肉类中的大肠杆菌DH5α和O157:H7。Colom等人(2017年)使用海藻酸钠/CaCO3对噬菌体进行微胶囊化,以保护它们免受胃液破坏,与非微胶囊化的噬菌体相比,这种方法在肉鸡中对沙门氏菌的控制效果更好。
3.3完整噬菌体的潜在风险
自然界中极具多样性。然而,噬菌体制剂的开发与传统化学制剂的开发不同,其在食品工业中的应用仍面临许多风险和挑战。例如,噬菌体可能通过横向转移将抗生素耐药相关基因传递给细菌(Colavecchio等人,2017)。噬菌体是非自身抗原,因此它们不仅可以通过吞噬作用和细胞因子反应调节先天免疫,还可以通过影响抗体产生和效应极化来影响适应性免疫。因此,噬菌体可能通过调节免疫反应来影响机体对细菌的清除(Principi等人,2019)。
此外,噬菌体本身是否含有有害成分、是否含有大量未知基因存在潜在风险,以及溶原性噬菌体是否会转移有害基因,都需要在基因组和蛋白质组水平上进行严格控制(Ge等人,2021b)。因此,除了使用完整的噬菌体外,应用功能更明确、风险更低的溶菌酶或其他蛋白质可能是一个更安全的选择(Corsini等人)。
3.4公众接受度
消费者越来越不愿意购买经过化学消毒、抗生素处理或“基因改造”的食品。同时,对有机食品和本地生产产品的需求也在不断增加(Moye等人,2018)。这一趋势对噬菌体生物防治来说是一个好兆头。然而,公众可能不愿购买“喷洒了病毒的食物”,食品生产商也往往不愿冒险改变传统的灭菌方法。因此,教育和引导公众及食品加工者,解释噬菌体的安全性、有效性和普遍性,以扩大其在生物防治中的应用范围,是至关重要的(Moye等人,2018)。
参考文献
[1] Moye, Z.D., Woolston, J., Sulakvelidze, A., 2018. Bacteriophage applications for food production and processing. Viruses 10, 205.
[2] Figueiredo, A.C.L., Almeida, R.C.C., 2017. Antibacterial efficacy of nisin, bacteriophage P100 and sodium lactate against Listeria monocytogenes in ready-to-eat sliced pork ham. Braz. J. Microbiol. 48, 724–729.
[3] Guenther, S., Huwyler, D., Richard, S., Loessner, M.J., 2009. Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl. Environ. Microbiol. 75, 93–100.
[4] Kahn, L.H., Bergeron, G., Bourassa, M.W., De Vegt, B., Gill, J., Gomes, F., Malouin, F., Opengart, K., Ritter, G.D., Singer, R.S., Storrs, C., Topp, E., 2019. From farm management to bacteriophage therapy: strategies to reduce antibiotic use in animal agriculture. Ann. N. Y. Acad. Sci. 1441, 31–39.
[5] Seo, J., Seo, D.J., Oh, H., Jeon, S.B., Oh, M.H., Choi, C., 2016. Inhibiting the growth of Escherichia coli O157:H7 in beef, pork, and chicken meat using a bacteriophage. Korean J. Food Sci. Anim. Resour. 36, 186–193.
[6] Hudson, J.A., Billington, C., Cornelius, A.J., Wilson, T., On, S.L.W., Premaratne, A., King, N.J., 2013. Use of a bacteriophage to inactivate Escherichia coli O157:H7 on beef. Food Microbiol. 36, 14–21.
[7] Hong, Y., Pan, Y., Ebner, P.D., 2014. Meat science and muscle biology symposium: development of bacteriophage treatments to reduce Escherichia coli O157:H7 contamination of beef products and produce. J. Anim. Sci. 92, 1366–1377.
[8] Minh, D.H., Minh, S.H., Honjoh, K., Miyamoto, T., 2016. Isolation and bio-control of Extended Spectrum Beta-Lactamase (ESBL)-producing Escherichia coli contamination in raw chicken meat by using lytic bacteriophages. LWT-Food Sci. Technol. 71, 339–346.
[9] Huang, C.X., Shi, J.C., Ma, W.J., Li, Z., Wang, J., Li, J.Q., Wang, X.H., 2018. Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices. Food Res. Int. 111, 631–641.
[10] Guenther, S., Herzig, O., Fieseler, L., Klumpp, J., Loessner, M.J., 2012. Biocontrol of Salmonella Typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int. J. Food Microbiol. 154, 66–72.
[11] Thung, T.Y., Lee, E., Mahyudin, N.A., Anuradha, K., Mazlan, N., Kuan, C.H., Pui, C.F., Ghazali, F.M., Ab Rashid, N.K.M., Rollon, W.D., Tan, C.W., Radu, S., 2019.
[12] Wang, C., Chen, Q., Zhang, C., Yang, J., Lu, Z., Lu, F., Bie, X., 2017. Characterization of a broad host-spectrum virulent Salmonella bacteriophage fmb-p1 and its application on duck meat. Virus Res. 236, 14–23.
[13] Spricigo, D.A., Bardina, C., Cortes, P., Llagostera, M., 2013. Use of a bacteriophage cocktail to control Salmonella in food and the food industry. Int. J. Food Microbiol. 165, 169–174.
[14] Bao, H.D., Zhang, P.Y., Zhang, H., Zhou, Y., Zhang, L.L., Wang, R., 2015. Bio-control of Salmonella Enteritidis in foods using bacteriophages. Viruses 7, 4836–4853.
[15] Zampara, A., Sorensen, M.C.H., Elsser-Gravesen, A., Brondsted, L., 2017. Significance of phage-host interactions for biocontrol of Campylobacter jejuni in food. Food Control 73, 1169–1175.
[16] Goode, D., Allen, V.M., Barrow, P.A., 2003. Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl. Environ. Microbiol. 69, 5032–5036.
[17] Ren, H.Y., Li, Z., Xu, Y.P., Wang, L.L., Li, X.Y., 2019. Protective effectiveness of feeding phage cocktails in controlling Vibrio parahaemolyticus infection of sea cucumber Apostichopus japonicus. Aquaculture 503, 322–329.
[19] Zhang, H., Yang, Z.Q., Zhou, Y., Bao, H.D., Wang, R., Li, T.W., Pang, M.D., Sun, L.C., Zhou, X.H., 2018. Application of a phage in decontaminating Vibrio parahaemolyticus in oysters. Int. J. Food Microbiol. 275, 24–31.
[20] Rong, R., Lin, H., Wang, J.X., Khan, M.N., Li, M., 2014. Reductions of Vibrio parahaemolyticus in oysters after bacteriophage application during depuration. Aquaculture 418, 171–176.
[21] Shahin, K., Bouzari, M., Wang, R., Yazdi, M., 2019. Prevalence and molecular characterization of multidrug-resistant Shigella species of food origins and their inactivation by specific lytic bacteriophages. Int. J. Food Microbiol. 305, 108252.
[22] Zhang, H., Wang, R., Bao, H.D., 2013. Phage inactivation of foodborne Shigella on ready- to-eat spiced chicken. Poult. Sci. 92, 211–217.
[23] Soffer, N., Woolston, J., Li, M.R., Das, C., Sulakvelidze, A., 2017. Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods. Plos One 12, e0175256.
[24] Lone, A., Anany, H., Hakeem, M., Aguis, L., Avdjian, A.C., Bouget, M., Atashi, A., Brovko, L., Rochefort, D., Griffiths, M.W., 2016. Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods. Int. J. Food Microbiol. 217, 49–58.
[25] Radford, D., Guild, B., Strange, P., Ahmed, R., Lim, L.T., Balamurugan, S., 2017. Characterization of antimicrobial properties of Salmonella phage Felix O1 and Listeria phage A511 embedded in xanthan coatings on poly(lactic acid) films. Food Microbiol. 66, 117–128.
[26] Lee, S., Kim, M.G., Lee, H.S., Heo, S., Kwon, M., Kim, G., 2017. Isolation and characterization of Listeria phages for control of growth of Listeria monocytogenes in milk. Korean J. Food Sci. Anim. Resour. 37, 320–328.
[27] Gharieb, R.M.A., Saad, M.F., Mohamed, A.S., Tartor, Y.H., 2020. Characterization of two novel lytic bacteriophages for reducing biofilms of zoonotic multidrug-resistant Staphylococcus aureus and controlling their growth in milk. LWT-Food Sci. Technol. 124, 109145.
[28] Bueno, E., Garcia, P., Martinez, B., Rodriguez, A., 2012. Phage inactivation of Staphylococcus aureus in fresh and hard-type cheeses. Int. J. Food Microbiol. 158, 23–27.
[29] Krylov, V., Shaburova, O., Pleteneva, E., Krylov, S., Kaplan, A., Burkaltseva, M., Polygach, O., Chesnokova, E., 2015. Selection of phages and conditions for the safe phage therapy against Pseudomonas aeruginosa infections. Virol. Sin. 30, 33–44.
[31] Malik, D.J., Sokolov, I.J., Vinner, G.K., Mancuso, F., Cinquerrui, S., Vladisavljevic, G.T., Clokie, M.R.J., Garton, N.J., Stapley, A.G.F., Kirpichnikova, A., 2017. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid InterfaceSci. 249, 100–133.
[32] Nilsson, A.S., 2014. Phage therapy-constraints and possibilities. Ups. J. Med. Sci. 119, 192–198.
[33] Reina, J., Reina, N., 2018. [Phage therapy, an alternative to antibiotic therapy?]. revEsp. Quim. 31, 101–104.
[34] Rose, T., Verbeken, G., Vos, D.D., Merabishvili, M., Vaneechoutte, M., Lavigne, R., Jennes, S., Zizi, M., Pirnay, J.P., 2014. Experimental phage therapy of burn wound infection: difficult first steps. Int. J. Burns. Trauma 4, 66–73.
[35] Guenther, S., Herzig, O., Fieseler, L., Klumpp, J., Loessner, M.J., 2012. Biocontrol of Salmonella Typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int. J. Food Microbiol. 154, 66–72.
[36] Bourkal'tseva, M.V., Krylov, S.V., Kropinski, A.M., Pleteneva, E.A., Shaburova, O.V., Krylov, V.N., 2011. Bacteriophage phi297, a new species of Pseudomonas aeruginosa temperate phages with a mosaic genome: potential use in phage therapy. Genetika 47, 794–798.
[37] Phothaworn, P., Supokaivanich, R., Lim, J.L., Klumpp, J., Imam, M., Kutter, E., Galyov, E.E., Dunne, M., Korbsrisate, S., 2020. Development of a broad-spectrum Salmonella phage cocktail containing Viunalike and Jerseylike viruses isolated from Thailand. Food Microbiol. 92, 103586.
[38] Fernandes, P., 2006. Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Appl. Microbiol. Biotechnol. 73, 291–296.
[39] Tomat, D., Casabonne, C., Aquili, V., Balague, C., Quiberoni, A., 2018. Evaluation of a novel cocktail of six lytic bacteriophages against Shiga toxin-producing Escherichia coli in broth, milk and meat. Food Microbiol. 76, 434–442.
[40] Chibeu, A., Agius, L., Gao, A., Sabour, P.M., Kropinski, A.M., Balamurugan, S., 2013. Efficacy of bacteriophage LISTEX (TM) P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked Turkey and roast beef. Int. J. Food Microbiol. 167, 208–214.
[41] Yang, S., Sadekuzzaman, M., Ha, S.D., 2017a. Reduction of Listeria monocytogenes on chicken breasts by combined treatment with UV-C light and bacteriophage ListShield. LWT-Food Sci. Technol. 86, 193–200.
[42] Yang, S., Sadekuzzaman, M., Ha, S.D., 2017b. Treatment with lauric arginate ethyl ester and commercial bacteriophage, alone or in combination, inhibits Listeria monocytogenes in chicken breast tissue. Food Control 78, 57–63.
[43] Leverentz, B., Conway, W.S., Camp, M.J., Janisiewicz, W.J., Abuladze, T., Yang, M., Saftner, R., Sulakvelidze, A., 2003. Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl. Environ. Microbiol. 69, 4519–4526.
[44] Vonasek, E., Le, P., Nitin, N., 2014. Encapsulation of bacteriophages in whey protein f ilms for extended storage and release. Food Hydrocoll. 37, 7–13. Vyas, P., Harish, 2022. Anti-CRISPR proteins as a therapeutic agent against drug- resistant bacteria. Microbiol. Res. 257, 126963.
[45] Colom, J., Cano-Sarabia, M., Otero, J., Arinez-Soriano, J., Cortes, P., Maspoch, D., Llagostera, M., 2017. Microencapsulation with alginate/CaCO3: a strategy for improved phage therapy. Sci. Rep. 7, 41441.
[46] Colavecchio, A., Cadieux, B., Lo, A., Goodridge, L.D., 2017. Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family - a review. Front. Microbiol. 8, 1108.
[47] Principi, N., Silvestri, E., Esposito, S., 2019. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front. Pharmacol. 10, 513.
[48] Ge, H.J., Zhang, K., Gu, D., Chen, X., Wang, X., Li, G.Q., Zhu, H.J., Chang, Y.Y., Zhao, G., Pan, Z.M., Jiao, X.A., Hu, M.Z., 2021b. The rfbN gene of Salmonella Typhimurium mediates phage adsorption by modulating biosynthesis of lipopolysaccharide. Microbiol. Res. 250, 126803.
[49] Corsini, B., Diez-Martinez, R., Aguinagalde, L., Gonzalez-Camacho, F., Garcia- Fernandez, E., Letrado, P., Garcia, P., Yuste, J., 2018. Chemotherapy with phage lysins reduces Pneumococcal colonization of the respiratory tract. Antimicrob. Agents Chemother. 62, e02212–e02217.
[50] Moye, Z.D., Woolston, J., Sulakvelidze, A., 2018. Bacteriophage applications for food production and processing. Viruses 10, 205.
上一篇:一种来自人类皮肤、能够感染凝固酶阴性葡萄球菌的噬菌体
下一篇:噬菌体疗法:为你私人订制的杀菌大军!
1、凡本网所有原始/编译文章及图片、图表的版权均属微生物安全与健康网所有,未经授权,禁止转载,如需转载,请联系取得授权后转载。
2、凡本网未注明"信息来源:(微生物安全与健康网)"的信息,均来源于网络,转载的目的在于传递更多的信息,仅供网友学习参考使用并不代表本网同意观点和对真实性负责,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请速来函告知,我们将尽快处理。
3、转载请注明:文章转载自www.mbiosh.com
联系方式:020-87680942