当前位置:

首页

>

专栏 >

>

今日热门

>

食用菌多糖的提取:新兴技术及最新进展

食用菌多糖的提取:新兴技术及最新进展

原创
来源:田回香
2025-04-17 09:17:28
114次浏览
分享:
收藏
核心提示:从传统热水浸提到新兴的超声波、微波协同技术,科学家们不断探索高效、环保的食用菌多糖提取方法,力求在产量与生物活性之间找到平衡点

食用菌多糖作为天然活性成分,近年来在食品、医药等领域备受关注。其独特的抗氧化、抗肿瘤及免疫调节等活性,推动了多糖提取技术的快速发展。从传统热水浸提到新兴的超声波、微波协同技术,科学家们不断探索高效、环保的提取方法,力求在产量与生物活性之间找到平衡点[1]。一篇由东海大学张嘉修研究团队发表在Carbohydrate Polymers上题为“Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances”的综述为大家介绍了食用菌多糖提取的新兴技术和最新进展。

 

传统热水提取(hot water extraction, HWE)虽成本低廉,但高温长时间处理易导致多糖降解与蛋白质变性,且能耗较高。例如,灰树花(Grifola frondosa)在121℃下提取120分钟,多糖得率仅3.35%,且分子量因热降解显著下降至561kDa[2]。酸/碱提取(acid- or alkaline-extraction, AE)通过破坏细胞壁连接结构,可提高不溶性多糖的得率,但强化学条件可能改变多糖构象,如平菇(Pleurotus ostreatus)经NaOH处理后,其β-葡聚糖虽得率提升,但分子量降低至30 kDa[3]

 

超声波辅助提取(ultrasonic-assisted extraction, UAE)利用空化效应破碎细胞壁,显著缩短提取时间。研究发现,灵芝(Ganoderma lucidum)在600W超声处理60分钟后,β-葡聚糖含量较传统方法提升77%,多糖纯度达50.2% [4]。然而,UAE可能导致分子链断裂,如亚侧耳(Hohenbuehelia serotina)经480W处理后的多糖分子量降至1.14 kDa[5]。微波辅助提取(microwave-assisted extraction, MAE)通过极性分子高频振动产热,实现快速穿透。香菇(Lentinula edodes)在850W微波下处理30分钟,得率达15.4%,且抗氧化活性优于传统方法[6]。值得注意的是,MAE与超声协同(ultrasonic-microwave synergistic extraction, UMSE)可结合两者优势,如东方栓菌(Trametes orientalis)经协同处理后多糖得率提升至7.52%,抗肿瘤活性显著增强[7]

 

酶辅助提取(enzyme-assisted extraction, EAE)以纤维素酶、果胶酶定向降解细胞壁基质,条件温和且特异性强。蒙古口蘑(Tricholoma mongolicum)经2%纤维素酶处理127分钟,多糖纯度达80.1%,对DPPH自由基清除率较超声提取提高7%[8]。但酶成本较高,且活性易受温度、pH影响,限制其工业化应用。亚临界水提取(subcritical water extraction, SWE)利用高温高压改变水介电常数,可同时实现提取与分级。杏鲍菇(Pleurotus eryngii)在210℃下处理,葡聚糖含量达73%,但温度超过130℃会导致多糖链断裂[9]。脉冲电场(pulsed electric field, PEF)通过电穿孔增强膜透性,羊肚菌(Morchella esculenta)在19kV/cm场强下提取的多糖得率较传统方法提升40%,且分子量分布更均匀[10]

 

双水相提取(aqueous two-phase extraction, ATPE)凭借溶剂-盐体系的分相特性实现高效纯化。白桦茸(Inonotus obliquus)经硫酸铵/叔丁醇体系处理,多糖纯化因子达5.7[11]。集成技术如EAE-UAE联用可突破单一方法局限,蜜环菌(Armillaria mellea)经复合酶预处理后超声提取,多糖得率提升至40.56%,抗氧化活性显著增强[12]。此外,纳米均质、真空提取等创新技术为多糖提取开辟新途径,如灵芝(G. lucidum)经纳米碳化钨辅助提取,β-葡聚糖纯度达70.2%,粒径分布更均一[13]

 

技术选择需兼顾目标多糖特性与产业化需求。分子量大的多糖更适合作免疫调节剂,而低分子量片段则利于跨膜吸收[14]。未来研究应关注技术联用机制、规模化模型构建及生命周期评估,推动食用菌多糖从实验室迈向工业化生产。通过持续优化提取工艺,这些源自食用菌的生命之糖将在人类健康领域谱写更辉煌的乐章。

 


参考文献:

[1] Leong, Y.-K., Yang, F.-C., Chang, J.-S. (2021). Extraction of polysacchparides from edible mushrooms: Emerging technologies and recent advances. Carbohydr Polym, 251, 117006.

[2] Su, C.-H., Lai, M.-N., & Ng, L.-T. (2017). Effects of different extraction temperatures on the physicochemical properties of bioactive polysaccharides from Grifola frondosa. Food Chemistry, 220, 400–405.

[3] Palacios, I., García-Lafuente, A., Guillamon, ´ E., & Villares, A. (2012). Novel isolation of water-soluble polysaccharides from the fruiting bodies of Pleurotus ostreatus mushrooms. Carbohydrate Research, 358, 72–77.

[4] Alzorqi, I., Sudheer, S., Lu, T.-J., & Manickam, S. (2017). Ultrasonically extracted β-dglucan from artificially cultivated mushroom, characteristic properties and antioxidant activity. Ultrasonics Sonochemistry, 35, 531–540.

[5] Li, X., & Wang, L. (2016). Effect of extraction method on structure and antioxidant activity of Hohenbuehelia serotina polysaccharides. International Journal of Biological Macromolecules, 83, 270–276.

[6] Akram, K., Shahbaz, H. M., Kim, G. R., Farooq, U., & Kwon, J. H. (2017). Improved extraction and quality characterization of water-soluble polysaccharide from gamma-irradiated Lentinus edodes. J Food Sci, 82(2), 296–303.

[7] Zheng, Y., Cui, J., Chen, A.-H., Zong, Z.-M., & Wei, X.-Y. (2019). Optimization of ultrasonic-microwave assisted extraction and hepatoprotective activities of polysaccharides from Trametes orientalis. Molecules (Basel, Switzerland), 24(1), 147.

[8] Zhao, Y. M., Song, J. H., Wang, J., Yang, J. M., Wang, Z. B., & Liu, Y. H. (2016). Optimization of cellulase-assisted extraction process and antioxidant activities of polysaccharides from Tricholoma mongolicum Imai. J Sci Food Agric, 96(13), 4484–4491.

[9] Rodríguez-Seoane, P., Díaz-Reinoso, B., Gonzalez-Mu ´ noz, ˜ M. J., Fernandez ´ de Ana Portela, C., & Domínguez, H. (2019). Innovative technologies for the extraction of saccharidic and phenolic fractions from Pleurotus eryngii. LWT, 101, 774–782.

[10] Liu, C., Sun, Y., Mao, Q., Guo, X., Li, P., Liu, Y., et al. (2016). Characteristics and antitumor activity of Morchella esculenta polysaccharide extracted by pulsed electric field. International Journal of Molecular Sciences, 17(6), 986.

[11] Liu, Z., Yu, D., Li, L., Liu, X., Zhang, H., Sun, W., et al. (2019). Three-phase partitioning for the extraction and purification of polysaccharides from the immunomodulatory medicinal mushroom Inonotus obliquus. Molecules (Basel, Switzerland), 24(3).

[12] Yu, G., Yue, C., Zang, X., Chen, C., Dong, L., & Liu, Y. (2019). Purification, characterization and in vitro bile salt-binding capacity of polysaccharides from Armillaria mellea mushroom. Czech Journal of Food Sciences, 37(1), 51–56.

[13] Park, H. G., Shim, Y. Y., Choi, S. O., & Park, W. M. (2009). New method development for nanoparticle extraction of water-soluble beta-(1–&3)-D-glucan from edible mushrooms, Sparassis crispa and Phellinus linteus. J Agric Food Chem, 57(6), 2147–2154.

[14] Zhang, J., Wen, C., Gu, J., Ji, C., Duan, Y., & Zhang, H. (2019). Effects of subcritical water extraction microenvironment on the structure and biological activities of polysaccharides from Lentinus edodes. International Journal of Biological Macromolecules, 123, 1002–1011.


文献链接:https://pubmed.ncbi.nlm.nih.gov/33142573/

  • 上一篇:探秘中华灵芝(紫芝)多糖GSPB70-S
  • 下一篇:食用菌,人类健康的天然宝藏
网站声明

1、凡本网所有原始/编译文章及图片、图表的版权均属微生物安全与健康网所有,未经授权,禁止转载,如需转载,请联系取得授权后转载。

2、凡本网未注明"信息来源:(微生物安全与健康网)"的信息,均来源于网络,转载的目的在于传递更多的信息,仅供网友学习参考使用并不代表本网同意观点和对真实性负责,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请速来函告知,我们将尽快处理。

3、转载请注明:文章转载自www.mbiosh.com

联系方式:020-87680942

评论
全部评论
热门资讯